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We have shown that the size of the magnetization step due to resonant spin tunneling in a molecular magnet
can be strongly affected by sound. The transverse-acoustic wave can also generate macroscopic quantum beats
of the magnetization during the field sweep.
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Single-molecule magnets �SMMs� have attracted much
interest because they provide possibility to observe quantum
effects at the macroscopic scale. Among these effects are
stepwise magnetization curve caused by resonant spin
tunneling,1,2 topological interference of tunneling
trajectories,3 and crossover between classical and quantum
superparamagnetisms.4,5 The Landau-Zener theory has been
used to describe spin transitions that occur during the field
sweep.6 It has been recognized that spin-phonon interactions
play an important role in the dynamics of spins in molecular
magnets.7–13 Possibility of Rabi oscillations of spins caused
by the acoustic wave has been studied.14 In recent years the
effect of sound on molecular magnets has been explored in
experiment.15 In this paper we show that sound can signifi-
cantly affect the size of the magnetization step due to reso-
nant spin tunneling. In the presence of the field sweep an
acoustic wave can also generate quantum beats of the mag-
netization of a macroscopic sample. We compute the param-
eters of the sound that are necessary to observe these effects.

The effect we are after is illustrated in Fig. 1. The lower
curve shows how the sound modulates the distance between
spin energy levels in the absence of the field sweep. In this
case the phase of Rabi oscillations caused by a propagating
sound wave depends on coordinates such that the oscillations
average out over the volume of the sample if the latter is
large compared to the wavelength of sound. In the presence
of the field sweep �the upper curve� the phase of the Rabi
oscillations is still a function of coordinates. However, the
Landau-Zener probability of spin transitions that contribute
to the oscillations depends on the rate of the field sweep.
That rate becomes modulated by the sound. Consequently,
the regions of the sample that contribute most to the dynam-
ics of the magnetization add their contributions construc-
tively. The resulting oscillations of the magnetic moment of
the sample can be observed in a macroscopic experiment.
Note that the quantum oscillations of the magnetization
driven by the sound wave should be more robust with respect
to decoherence and, thus, easier to observe than the free os-
cillations.

We consider a crystal of single-molecule magnets with the
Hamiltonian

HSMM = − DSz
2 − g�BHzSz + Htrans, �1�

where Si are Cartesian components of the spin operator and
D is the second-order anisotropy constant. The second term

is the Zeeman energy due to the longitudinal field Hz, with g
being the gyromagnetic factor and �B being the Bohr mag-
neton. The last term includes the transverse magnetic field
and the transverse anisotropy, which produce level splitting.
Local rotation produced by a transverse-acoustic wave of
frequency �=ctk, wave vector k, and amplitude u0, polarized
along the y axis and running along the x axis is given by16

���r� =
1

2
ku0 cos�kx − �t�ẑ . �2�

Due to the rotation of the local anisotropy axis by sound, the
spin Hamiltonian becomes9

H = e−i��·ŜHSMMei��·Ŝ. �3�

The simplest solution of the problem for an individual spin
can be obtained in the coordinate frame that is rigidly
coupled to the local crystallographic axes. The wave func-
tions in the laboratory and lattice frames, ��� and ���lat��, are
related through

���lat�� = ei��·Ŝ��� , �4�

while the spin Hamiltonian in the lattice-frame is given
by9,17,18

H�lat� = HSMM − �Ŝ · � �5�

with

FIG. 1. Schematic of the time dependence of the distance be-
tween spin energy levels. Thin solid line: the effect of the acoustic
wave without the field sweep. Thick solid line: field sweep is modu-
lated by the acoustic wave.
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� � ��̇ =
�2

2ct
u0 sin�kx − �t�ẑ . �6�

We are going to solve the problem locally for each spin in
the lattice frame and then use the above formulas to obtain
the solution for the entire crystal in the laboratory frame.

In the absence of transverse terms the energy levels of the
Hamiltonian �1� are

Em = − Dm2 − g�BHzm , �7�

where Ŝz�m�=m�m�. Close to the resonance between �−S� and
�S−M� the Hamiltonian �5� can be projected onto these
states, resulting effectively in a two-level model,

Heff
�lat� = −

1

2
	
̂x − �E�
̂z + Î� , �8�

where

�E = �S −
M

2
��g�Bct +

��R

S
sin�kx − �t�	 ,


̂z = �S − M�
S − M� − �− S�
− S� ,


̂x = �S − M�
− S� + �− S�
S − M� ,

Î = �S − M�
S − M� + �− S�
− S� , �9�

	 is the splitting of the resonant levels, c=dHz /dt is the field
sweep rate, and

�R =
�2

2ct
u0S �10�

is the Rabi frequency. Treating x as a parameter, we express
the corresponding wave function as

��eff
�lat��t�� = bS−M�t��S − M� + b−S�t��− S� �11�

and solve the time-dependent Schrödinger equation

i�
� ��eff

�lat��t��
�t

= Heff
�lat���eff

�lat��t�� �12�

that at M =0 becomes equivalent to the following two
coupled differential equations:

dbS

d�
= 2iS��� −

qp

S
sin�p� − kx�	bS +

i

2
b−S,

db−S

d�
=

i

2
bS, �13�

where we introduced dimensionless

� = t�	

�
�, � =

�g�Bc

	2 , p =
��

	
, q =

�R

�
. �14�

We consider samples of length that are large compared to the
wavelength of the sound. The expectation value of the z pro-
jection of the spin at M =0 is given by


��t��Ŝz���t�� = S�bS����2 + �− S��b−S����2. �15�

Equation �13� has been solved numerically. Figure 2 illus-
trates situation when the field was changing at a constant rate
� and a pulse of sound was introduced shortly before reach-
ing the resonance between the �−S� and �S� states. The tunnel
splitting is assumed to be sufficient to produce transitions
between these two states. The most striking feature of the
magnetization dynamics observed in simulations is the beats
which are in line with the idea outlined in the introduction.
Figure 3 shows the p dependence of the final magnetization
on crossing the step for various values of � and q. This
strong dependence of the magnetization step on frequency
and amplitude of the acoustic wave, as well as on the sweep
rate, is one of our main results. We believe that it should not
be difficult to observe this effect in experiment.

Another possible experimental situation corresponds to
the sample initially saturated in the �−S� state, after which the
acoustic power of frequency ��	 /� is applied to the crystal

FIG. 2. �Color online� Time dependence of the average spin of
the sample for given values of p and q at S=10, M =0, and
�=0.02. Inset: magnetization step and oscillations in the wider
range of �.

FIG. 3. �Color online� Final magnetization vs p for the M =0
step with and without acoustic wave at different � and q. Inset: 
Sz�
vs � at �=0.01, q=0.2, and p=0.9.
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and maintained during the sweep. Here �S−M� is the level
that at a given sweep rate provides significant probability of
the transition when it is crossed by the �−S� level. In order to
study such a problem, we need to know the rate of relaxation
of the �S−M� state to the lower-energy states. Defining
S−M+1,S−M as the rate of the �S−M�→ �S−M +1� transition
and introducing �M =�S−M+1,S−M /	, we obtain two coupled
differential equations

dbS−M

d�
= izbS−M +

i

2
b−S,

db−S

d�
=

i

2
bS−M , �16�

where

z = �2S − M���� − �qp/S�sin�p� − kx� + i�M/2. �17�

Note that the treatment of our problem in terms of the dissi-
pative Schrödinger equation is equivalent to the treatment in
terms of the density matrix.19 As the lifetimes of the excited
states with �S−M +1� , . . . , �S−1� are shorter than the lifetime
of �S−M�, their contributions to the above equations can be
neglected. Then


Sz� = − 2S�b−S����2 − M�bS−M����2 + S �18�

We solve Eq. �16� numerically for selected values of � and
�M. In the overdamped case, S−M+1,S−M �	, we find no
Rabi oscillations. For the underdamped case, S−M+1,S−M
�	, the numerical solution is illustrated in Fig. 4. As the
damping increases, the magnetization jump becomes more
pronounced but the oscillatory dynamics disappears. The
comparative behavior of different resonances is shown in
Fig. 5.

Let us now study the optimal conditions for the observa-
tion of the macroscopic acoustic Rabi effect studied above.

Defining �q�� ,x��S���− �qp /S�sin�p�−2�x /��, where �
=2� /k is the wavelength of the sound, the coupled differen-
tial equations �13� can be written as

b̈S − 2i�qḃS − �2i�̇q −
1

4
�bS = 0, �19�

where ḃS=dbS /d�, b̈S=d2bS /d�2, and so on. Introducing bS
=dS exp�iv��� and selecting v̇=�q, we get

d̈S + �− i�̇q + �q
2 +

1

4
�dS = 0, �20�

which describes damped oscillations. At q�0 we have, e.g.,
for x=0 and x=� /2,

�q��,0� = S��� −
qp

S
sin�p��	 , �21�

�q��,�/2� = S��� +
qp

S
sin�p��	 , �22�

respectively. This implies that each frequency generates slow
and fast oscillatory regions due to the sinusoidal function,
and they show different damped oscillatory structures in a
given range of �. In other words if �q�� ,0� is larger than
�0�S�� in some range of �, �q�� ,� /2� is smaller than �0,
and vice versa �see Fig. 1�. At ��0 the frequencies are ap-
proximately given by �q�� ,0��S��−qp2 /S�� and
�q�� ,� /2��S��+qp2 /S��. Introducing tan �1= �̇q�� ,0�,
tan �2= �̇q�� ,� /2�, and w=qp2 /S, we get

�tan��1 − �2�� = � 2w

1 + �2 − w2� , �23�

which increases monotonically in the range of 0�w�1
+�2. Under this condition, let us first consider two limiting
cases: w�� and w��. In the first case ��1−�2� increases
with w, and thereby ��q�� ,0�−�q�� ,� /2�� also increases,
which is a less favorable situation for the beats. In the second
case we have �1��2, which results in �q�� ,0���q�� ,� /2�
��0. This also is not a favorable situation for the beats

FIG. 4. �Color online� 
Sz� vs � for �2=0, 0.1, 0.5, and 1.0 at
S=10, p=0.9, q=0.247, �=0.02, and M =2. Inset: oscillations be-
tween �=20 and �=50 at �2=0 and 0.1. Note that the beats and the
oscillatory behavior disappear as �2 increases.

FIG. 5. �Color online� 
Sz� vs � for M =0, 1, and 2, at �M =0,
S=10, p=0.9, q=0.247, and �=0.02.
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because it does not generate slow and fast oscillatory regions
for x=0 and x=� /2, as discussed previously. The optimal
condition for pronounced beats is then

� �
qp2

S
. �24�

We shall now discuss what the above condition means for
experiment. It is easy to see that Eq. �24� is equivalent to

u0

�
=

q

�S
. �25�

The validity of the continuous elastic theory that we em-
ployed requires u0��, that is, one needs to satisfy the con-
dition q�1. This is not sufficient, although. Since experi-
ments on molecular magnets require temperature in the
Kelvin range or lower, one should also be concerned with the
power of the sound. It should be sufficiently low to avoid the
unwanted heating of the sample. The power per cross-
sectional area of the sample is given by P /A= 1

2�u0
2�2ct. For,

e.g., the parameters of Fe-8 molecular magnet we find that
the optimal conditions of the experiment require sound of
frequency f =0.5–1 MHz and power in the range of
100–200 W /cm2 introduced into the sample simultaneously
with the field sweep of 1 kG/s. Time dependence of the mag-
netization under these conditions is shown in Fig. 6.

In order to establish how robust the above effects are, we
should now consider the effects of disorder on the quantum
beats. This can be done by introducing

Hz = Hz
�M� + �H�x� + ct , �26�

where Hz
�M�=DM / �g�B� is the Mth resonant field and �H�x�

is a local random field that describes the disorder. Then �E of
Eq. �9� becomes

�E�d� = �S − M/2��g�B��H�x� + ct + ���R/S�sin�kx − �t�� ,

�27�

The coupled differential equations �13� at M =0 become

dbS

d�
= 2iS���x� + �� −

qp

S
sin�p� − kx�	bS +

i

2
b−S,

db−S

d�
=

i

2
bS, �28�

where ��x�=g�B�H�x� /	. The numerical solution of these
equations, illustrating the effect of disorder, is shown in Figs.
7 and 8 which are the counterparts of disorder-free Figs. 5
and 6 at M =0. It appears that the critical strength of disorder
at which the beats disappear corresponds to ��0.005. Thus,
even a slight non-uniformity in the magnetic field will de-
stroy the effect. In this connection we should notice that, as
has been recently demonstrated, the field sweep in a molecu-
lar magnet is accompanied by the self-organization of the
dipolar field such that the external magnetic field in the crys-

FIG. 6. Time dependence of the magnetization of the sample for
M =0 at S=10, �=0.006, q=0.01, and p=2.45. The optimal values
of the parameters have been chosen.

FIG. 7. �Color online� 
Sz� vs � for �=0, 0.005, 0.01, and 0.1 at
S=10, p=0.9, q=0.247, and �=0.02. Inset: oscillations between �
=10 and �=30. Note that the beats tend to disappear as � increases.

FIG. 8. �Color online� Disorder dependence of the magnetiza-
tion 
Sz� vs � for �=0, 0.001, and 0.01 at M =0, S=10, p=2.45, q
=0.01, and �=0.006. Inset: comparison of 
Sz� with sound to the
one without sound. Note that the converging values are not affected
by disorder.
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tal maintains a very high degree of uniformity.20 Regardless
of this effect, our prediction that the asymptotic value of 
Sz�
exhibits a significant decrease in the presence of the sound
�see Fig. 8� is not affected by disorder.

Another concern may be the validity of the two-level
model for the description of the beats. To check this approxi-
mation, we write the quantum state of the system as

���lat��t�� = �
M=−S

S

aM�t��M� . �29�

We now have to solve the time-dependent Schrödinger equa-
tion for the Hamiltonian �5�. It generates 2S+1 differential
equations for the coefficients aM�t�. As is shown in Fig. 9,
the two-level approximation is sufficiently good to give cor-
rect dynamics of the system. This is because close to the
resonance between the states �−S� and �S−M�, the weight
transfer occurs mostly between the two levels at the anti-
crossing field HM

�0�, for M =0,1 ,2 , . . ., until the complete
depletion of the state �−S� takes place.

In conclusion, we have demonstrated that the size of the
magnetization step due to resonant spin tunneling in molecu-
lar magnets can be strongly affected by sound. This effect is
robust with respect to disorder. The acoustic wave can also
generate macroscopic quantum beats of the magnetization
during a field sweep. The required frequency �MHz� and

power �0.1 kW /cm2� of the sound and the required sweep
rate �1 kG/s� are within experimental reach.
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